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ABSTRACT 
 
While scientific visualization is an increasingly important paradigm for big data analysis, flow visualization is 
primarily dedicated to the depiction of tangential directions and topological features of velocity vector data that may 
result from modeling and simulation of oceanographic–atmospheric phenomena as well as computational fluid 
dynamics. This paper presents a suite of novel techniques for explorative, immersive, and interactive visualization of 
volume flows by exploiting the high-performance algorithms of our ActiveFLOVE (FLOw Visualization 
Environment) package, i.e., a collection of C++ classes developed from scratch without dependence on any third-
party library/tool. In the form of seeds uniformly placed on a 3D lattice, a dynamically reconfigurable seeder is 
attached to and centered at the user. With one streamline spawn from each seed, a set of illuminated curves is 
“dragged” by the user for examining regions of interest or investigating the context within reach. Regardless of the 
data size, this seeder-based user-driven mechanism works at real-time frame rates on an ordinary laptop without the 
need for either special graphics hardware or any parallel implementation. This capability comes true not only 
because the exploration-oriented characteristic confines computing to only a subset of data for the local region and 
some context but also because an ultra-fast, highly accurate, and very robust streamline integrator serves as the 
horsepower. Meanwhile, flow structures can be probed by toggling on, translating (left / right / upward / downward / 
forward / backward), and rotating a rectangular view-perpendicular cutting plane, like a magnifying glass, on which 
a 2D projection of the flow is delineated by a multi-resolution representation selected on the fly among a clean 
layout of arrows, an aesthetic placement of evenly-spaced streamlines, and a realistic Line Integral Convolution 
texture. In addition, we design a pixel-based focus-guided content culler that can be translated and rotated, 
optionally hooked on a view-orthogonal cutting plane, to address visual clutter and view occlusion by pruning part 
of the scene to highlight the rest. Furthermore, we extend the proposed techniques to VR, via Unreal and HTC Vive, 
to enhance the look and feel of volume flows for more immersive exploration to facilitate scientific discovery.  
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INTRODUCTION  
 
As advanced physics-based modeling and high-fidelity continuous simulation give rise to massive amounts of data, 
complex patterns and intricate features may not all the time be properly extracted or effectively presented through 
non-visual computing paradigms like data mining and machine learning. Scientific visualization (SciVis) is an 
intuitive methodology for improved analysis of data “mounted” on a 2D/3D grid of discrete sample points at which 
one or multiple physical variables are defined. Stemming from computer graphics, drawing on image processing, 
and empowered by high-performance computing, SciVis is an integral stage of the modeling-simulation-
visualization-analysis pipeline, facilitating our comprehension and interpretation of the spatiotemporal dynamics 
embedded in a data field. While scalar data visualization shows the geometric structure or spatial distribution of a 
non-directional property (e.g., pressure, temperature, humidity, density, salinity, and precipitation), flow 
visualization (Laramee et al., 2004; McLoughlin et al., 2009) is mainly focused on the delineation of directional 
information out of velocity vector data (e.g., ocean currents, wind flows, electromagnetic fields, and incompressible 
fluids). Flow visualization has seen widespread applications and demonstrated tremendous capabilities in analyzing 
vector data arising from computational fluid dynamics (CFD) and oceanographic-atmospheric simulations. 
 
Directional information is encoded by two or three intrinsically coupled component values at each sample point of a 
data field. A valid representation requires that an anisotropic entity of enough length, constituted by either a 
geometric primitive (e.g., an arrow or a curve made up of line segments) or an array of consecutive texture elements 
(i.e., texels: fragments equivalent to pixels in 2D; volumetric elements or voxels in 3D) with similar intensity values, 
be employed to convey the local tangential direction at an individual point, or with more continuity, an integral path 
of movement (Liu et al., 2012). Exhibiting such spatial coherence along the flow direction (or tangential coherence) 
imposes an extra demand on the limited 2D screen real-estate that already struggles with content complexity. By 
itself, the representation of tangential coherence adds to visual clutter, view occlusion, and depth ambiguity in 3D 
settings. In fact, this situation is further compounded by placing many anisotropic entities in the domain to provide 
sufficient coverage so as to reveal salient patterns and capture elusive features. 
 
There has been significant research in visualizing flows ranging from steady to unsteady and from 2D to surface and 
further to volume, though steady volume flow visualization is still an open problem due to the three aforementioned 
issues, i.e., visual clutter, view occlusion, and poor depth cueing, among others. The latter two indicate that 3D 
texture-based techniques (Laramee et al., 2004) such as the volume extension of Line Integral Convolution (LIC, 
Figure 1.a, Cabral & Leedom, 1993) or VLIC, are not good at dealing with volume flows because the dense 
representation, despite an advantage for 2D flows, turns into a drawback for the 3D case. To exacerbate these two 
issues, transfer functions designed via painstaking efforts for Direct Volume Rendering (DVR, Levoy, 1988), are 
awkward in “combing” flow streaks out of a 3D texture, yielding either a vague cloud (Shen et al., 1996) or short 
thick stream “tubes” (Interrante & Grosch, 1997). In addition, the voxelization of integral curves, performed for the 
convolution process, introduces errors to flow streaks and hence incurs jagginess to the resulting stream “tubes”. 
Furthermore, both 3D LIC and DVR are extremely compute-intensive, preventing VLIC from interactive 
visualization of even a small volume flow unless graphics hardware acceleration or parallel computing is utilized. 
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As a geometry-based technique (McLoughlin et al., 2009), streamlines (Figure 1.b, Liu et al., 2006; Han et al., 2019) 
are straightforward, effective, and efficient for visualizing large steady volume flows. They enable fast generation of 
a 1.5-dimensional representation with intuitive accurate depiction of the flow direction. Originating from a seed 
position (where a particle is released), a streamline refers to a field line (i.e., the trajectory of the particle) that is 
point-wise tangent to velocity vectors. Irrespective of any particle (analogous to a car), a streamline denotes a 
permanent trace (analogous to a road), among numerous others, in a time-independent vector field. This continuous 
curve is constructed by using small to tiny line segments to connect a sequence of sample points which are some 
consecutive “snapshots” of the particle in motion driven by the flow. These sample points are obtained via 
numerical integration from the seed step by step. In essence, numerical integration (i.e., a simulation procedure) 
solves an ordinary differential equation (i.e., a form of physics-based modeling) that governs the step-by-step 
movement (i.e., advection) of the particle. Also known as an integral curve, a streamline itself does not provide 
information in the direction perpendicular to the flow (i.e., the orthogonal direction). This “sparse” coverage, with 
1.5-dimensional continuity (but a 1D manifold), offers a “see-through” effect in a 3D scene with many streamlines 
and hence helps alleviate view occlusion issues that tend to be caused by other geometry-based techniques, e.g., 
stream surfaces, stream ribbons, and stream tubes. 
 
We believe that an interactive, immersive, and explorative framework is well suited for visualization of large steady 
volume flows. (1) Interactive: High computational performance needs to be prioritized to attain interactive to real-
time frame rates even on an ordinary desktop PC with a single CPU but without the need for parallel implementation 
(by either GPU or MPI, Liu, 2019), regardless of the data size. This philosophy is aligned with a famous saying, 
“interactivity is the key to visualization”. (2) Immersive (engaging): High-quality delineation of tangential flow 
directions is instrumental to visual perception and mental reconstruction of the overall pattern, salient structures, and 
intricate features (Liu et al., 2012). An ideal case is that the user is deeply engaged in computer-generated virtual yet 
insightful visually appealing display of the flow (Liu et al., 2006) during a sense-making process even on regular PC 
platforms. Certainly, realistic effects and immersive experiences may be further augmented in VR environments. (3) 
Explorative: By adjusting visualization parameters, performing operations on the data, and manipulating the view, 
user interaction is crucial for fruitful flow analysis. Given a large unknown dataset and the limited 2D screen real-
estate, user exploration in 3D space is indispensable for identifying and understanding complex structures and 
elusive features by minimizing view occlusion, visual clutter, and depth ambiguity. Explorative visualization also 
enables feature-oriented retrieval and ROI (Region of Interest) -based examination, confining the computational cost 
and memory footprint that both would otherwise be extremely aggravated by the entirety of big flow data. 
 
Motivated by these observations, this paper presents our recent work on explorative, immersive, and interactive 
visualization of steady volume flow data. These three characteristics are made possible by a high-performance 
engine called ActiveFLOVE (FLOw Visualization Environment, Liu & Moorhead, 2016) that we have developed 
and maintained in the past. A set of “building blocks” of ActiveFLOVE, i.e., fundamental algorithms of flow 
visualization in the form of C++ classes, allows us to make a variety of combinations to bring forth new methods 
and add cutting-edge functionalities such that a significant extension of ActiveFLOVE, or ExActiveFLOVE for short 
to denote a suite of contributions of this paper, can be achieved. Specifically, a 3D rectangular uniform grid is 
adopted to mimic a seeder, i.e., a “machine” for “planting” many seeds simultaneously, that can be dynamically re-
configured in the position, capacity, and resolution. With the seeder centered at the user all the time and with one 3D 
streamline produced rapidly and accurately from each seed point, a bunch of integral curves is then “dragged” by the 
user and rendered with a special illumination model for explorative visualization of the flow at real-time frame rates. 
In addition, we devise a rectangular cutting plane that is toggled on/off, translated (left / right / upward / downward / 
forward / backward), and rotated (around the vertical axis) within the volume on the fly but always perpendicular to 
the view direction for deriving a 2D vector field, to which arrows, automated placement of evenly-spaced 
streamlines, and LIC can alternatively be applied to show various profiles of the flow, emulating a magic lens. 
Furthermore, we design an interactive content-culling widget, which, possibly fastened on a view-perpendicular 
cutting plane, removes part of the graphical elements to avoid visual clutter and view occlusion but to highlight an 
ROI. With the novel capabilities mentioned above for delivering interactive immersive explorative visualization of 
volume flows on traditional PC platforms, ExActiveFLOVE also supports an extension to VR devices such as HTC 
Vive by means of Unreal, heightening the illusion as if the user were positioned and navigating in the 3D data. 
 
The remainder of this paper is organized as follows. Section 2 begins with a concise survey of the literature closely 
related to our work, followed by a treatise of such important components of our ActiveFLOVE package that are 
exploited in ExActiveFLOVE. In section 3, we present ExActiveFLOVE, with details involving seeder-based user-



 
 
 

MODSIM World 2020 

2020 Paper No. 17 Page 5 of 12 

driven placement of streamlines, extraction and visualization of the 2D projection of the volume flow on a view-
orthogonal cutting plane, a content culler for tackling clutter, occlusion, and depth issues, and VR extension. Results 
and discussions are provided in section 4 to demonstrate the effectiveness and strengths of ExActiveFLOVE for 
visualizing steady volume flows. Section 5 concludes this paper with a brief summary and outlook on future work. 
 
 
PREVIOUS WORK 
 
Two well-known literature reviews (McLoughlin et al., 2009; Laramee et al., 2004) on geometry-based methods 
(e.g., arrows, streamlines, pathlines, streak lines, stream ribbons, stream tubes, and stream surfaces) and texture-
based approaches (e.g., LIC and UFLIC), respectively, are very comprehensive. Thus, this section is focused on 
flow visualization algorithms that are related the most to and directly employed in our work (ExActiveFLOVE), i.e., 
streamlines and LIC. Also introduced is ActiveFLOVE on which ExActiveFLOVE is built. 
 
Related Algorithms 
 
As an integral method for the steady-state case, streamlines (Liu et al., 2006; Han et al., 2019) are probably the most 
important in flow visualization. Streamlines pave the way for many other algorithms, including stream ribbons, 
stream tubes, stream polygons, stream surfaces, and stream volumes. If the advection step size, a measure of pseudo 
time for calculating streamlines, is defined as a real time interval, numerical integration applies to unsteady flows to 
yield pathlines (i.e., particle traces) (Nguyen et al., 2019) from which to implement streak lines (Liu et al., 2003) and 
streak surfaces. It is worth emphasizing that streamlines, generated in continuous space (Stalling & Hege, 1995) or 
discretized / approximated by pixels / voxels (Cabral & Leedom, 1993; Shen et al., 1996), underlie many texture-
based methods. Although numerical accuracy with respect to streamline integration was analyzed in depth three 
decades ago, it has not gained sufficient attention. In practice, fixed step sizes are utilized by a plethora of 
streamline-based algorithms nowadays. In this way, a relatively large step size tends to overshoot a flow trace and 
fails to capture high-curvature structures. On the other hand, a small and even tiny step size may still miss features 
in heavily turbulent areas, whereas a huge yet unnecessary amount of computational time is consumed in laminar 
parts. As opposed to this rigid strategy, an adaptive scheme dynamically adjusts the size based on an estimation of 
the error that the current step of integration introduces. It is intended to achieve both fast and accurate streamline 
generation. A simple measure takes the angle between the previous line segment and the new line segment being 
created by the current step, which is then compared against a designated range of angles (e.g., [5º, 10º]). The step 
size is enlarged and shrunk if the angle underflows and overflows, respectively (Liu et al., 2003). With an adaptive 
step size determined for the current advection, there are a couple of options for integrating the streamline one hop 
ahead to obtain the next sample point along the curve, e.g., Euler integrator, mid-point integrator, 4th-order Runge-
Kutta Integrator (or RK4, Liu et al., 2006), and even RK5 in order of increasing accuracy. Except for the first 
method, the velocity vector at each of several sample points needs to be evaluated to constitute a stage. A single step 
of streamline integration comprises two, four, and five stages in the latter three methods, respectively, which are 
hence called multi-stage integrators. The choice of a step size and that of an integrator in combination have an 
overwhelming influence on the numerical accuracy and computational speed of streamline generation. 
 
Governed by physical dynamics, a flow usually converges in some areas and diverges in others, exhibiting 
topological patterns revolving around critical points. A simplistic selection of seeds, either randomly or at a set of 
grid points, often results in an incomplete representation, a cluttered delineation, or both. Thus, appropriate seed 
selection and even further control over the growth of each streamline are crucial for informative elegant distribution 
of streamlines. In fact, automated layout of streamlines is a hot research topic. Some efforts are oriented towards 
highlighting topological features, with primary seeds placed around critical points by means of templates before 
secondary seeds are planted elsewhere for streamlines to fill remaining voids. Most algorithms are instead dedicated 
to Evenly-Spaced Streamline (ESS) placement, of which one solution resorts to image processing to fulfill implicit 
computationally expensive density control (Turk & Banks, 1996). The other, as used by the majority, turns to 
geometry-based inter-point distance check to approximate inter-streamline distance evaluation (Jobard & Lefer, 
1997) in a way to conduct explicit relatively fast density control. Our ADVanced ESS algorithm (ADVESS, Figure 
1.c, Liu et al., 2006) adopts an RK4 integrator with Adaptive Step Size and Error Control (RK4-ASSEC) to attain 
highly accurate and ultra-fast generation of streamlines and makes use of cubic Hermite polynomial interpolation to 
produce uniform samples along each streamline in support of inter-point distance control. ADVESS remains the 
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fastest algorithm for high-quality ESS layout, up to 10 times faster than others. In addition, it is the only ESS 
algorithm that offers rapid robust loop detection to avoid any clutter from tightly spiraling streamlines. 
 
Although 3D texture-based methods (Shen et al., 1996) have obvious and severe drawbacks in direct visualization of 
volumetric flows (Section 1), their 2D counterparts, particularly 2D LIC (or LIC hereinafter unless otherwise noted, 
Cabral & Leedom, 1993), possess advantages in visualizing the 2D profile of a volume flow projected on a cutting 
plane. Inspired by and adapted from image processing techniques, LIC applies a low-pass filter (e.g., one based on a 
box kernel) to a white noise texture (or an especially designed noise pattern) to convolve an array of pixels along a 
1.5-dimensional curve instead of those within a rectangular neighborhood. The basic idea is to expose the close 
correlation between the samples of each streamline, in the form of the associated consecutive pixels carrying similar 
intensity values, through a smearing operation on a dense aggregation of massless particles. This image synthesis 
procedure emulates what happens when a rectangular area of fine sands is blown by a gust of strong wind. In more 
detail, from the center of each pixel (the target) of the output LIC image, a seed is released to integrate a streamline 
in both negative and positive directions, but with the same length wherever possible. Then, the correlated pixels (as 
the contributors) are located for the target pixel (as the receiver). Next, white noise is indexed to get the texture 
values for these contributing pixels. Finally, convolution is performed on these values to calculate a normalized 
weighted sum as the value of the target pixel. This pipeline is repeated for each and every pixel to produce the entire 
LIC image. The strengths of LIC consist in the high-resolution, dense, realistic representation of a planar flow. 
 
ActiveFLOVE 
 
There have been some open-source systems or packages with more or less support for flow visualization. Analogous 
to the Complex Instruction Set Computer (CISC) architecture, the cross-platform general-purpose design leads to an 
excessive scope (e.g., with hundreds of data file readers), a fat software framework, heavy dependencies (on many 
third-party libraries/packages), cumbersome user interface, considerably outdated algorithms, and low 
computational performance (even in parallel settings). These widely known caveats hinder such colossal packages 
from delivering novel robust fast accurate flow visualization to meet emerging and oftentimes even routine needs. 
Thus as part of our previous work, we developed a high-performance toolkit called FLOw Visualization 
Environment (ActiveFLOVE, Liu & Moorhead, 2016), using C/C++ from scratch, that encompasses a collection of 
effective, efficient, high-fidelity, robust, and versatile yet compact visualization components as well as basic utility 
modules. Inspired by the Reduced Instruction Computer Set (RISC) architecture and the smart OpenGL graphics 
engine, ActiveFLOVE is devoted to such fundamental elements of flow visualization that are indeed necessary for 
constructing geometry-based methods (e.g., streamlines, pathlines, streak lines, and stream surfaces) and texture-
based approaches (e.g., LIC, UFLIC, and AUFLIC, Liu & Moorhead, 2005), leaving data format, image format, 
realistic rendering, user interface, and other peripheral items (e.g., MPI/GPU/multithreading parallelization, wrapper 
access, plugin deliverables, standalone systems, and VR extension) for higher levels of work in the stack. 
 
ActiveFLOVE is characterized by a self-contained philosophy (without dependence on any third-party 
library/package), a thin framework, a shallow hierarchy, highly accurate flow representation (range of errors: 106 ~ 
105), ultra-fast flow advection (via the RK4-ASSEC streamline integrator, Liu et al., 2006, capable of generating 
7,800 streamlines with 6.1 million points per second for a wind volume flow on a Cartesian grid and 1,600 
streamlines with 1.58 million points per second for the blunt-fin volume flow on a curvilinear grid, both using a 
single ordinary CPU), very robust implementation, and great ease of use. In fact, RK4-ASSEC is algorithmically the 
same as the integrator of FastLIC (Stalling & Hege, 1995), and to the best of our knowledge, these two are arguably 
the most accurate and the fastest in the literature. The outstanding computational performance, with interactive to 
real-time frame rates (tens of frames per second) on ordinary laptops without the requirement of parallel support 
(MPI and GPU), allows ActiveFLOVE to serve as a solid engine for explorative visualization of large flow data 
defined on Cartesian, curvilinear, and unstructured grids. With a pool of primitive “building blocks” that can be 
configured and assembled in many ways, ActiveFLOVE facilitates the design of new algorithms and addition of 
composite functionalities as our recent work, i.e., ExActiveFLOVE, demonstrates in the next section. 
 
 
EXACTIVEFLOVE (EXTENSION OF ACTIVEFLOVE) 
 
In this section, we present our work on an extension of ActiveFLOVE, namely ExActiveFLOVE, for explorative 
immersive interactive visualization of volume flow data. Featured in ExActiveFLOVE are real-time seeder-based 
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user-driven placement of 3D streamlines, a dynamically reconfigurable and maneuverable view-perpendicular 
cutting plane on which arrows, ESS, and LIC are employed to visualize a 2D profile of the volume flow, an 
interactive culler for filtering contents of the scene, and a combination of Unreal with HTC Vive for VR support. 
 
User-Driven Placement of 3D Streamlines 
 
Most work in volume flow visualization, including the use of streamlines, has been limited to outside-in views of the 
overall pattern and / or manual tedious rigid seeding schemes. These strategies usually cause either a coarse 
depiction or a cluttered image, particularly for complex structures. The high computational speed of the RK4-
ASSEC integrator (Section 2.1) makes it possible for us to implement our advocacy of explorative visualization of 
volume flows (Section 1) by devising a seeding template which is controlled by the user at great ease for immersive 
navigation in the 3D domain even on traditional PC platforms. Bringing the user inside the data alleviates view 
occlusion, enables in-depth examination, and helps identify local features. Essentially, this solution amounts to user-
guided flow visualization, which in turn implies that a user-centric seeding device is a straightforward choice. While 
the user intends to investigate an ROI around a group of seeds, the associated streamlines usually extend beyond the 
ROI and run into the contextual area. In this way, the entire view provides focus+context visualization of the flow. 
Meanwhile, streamline integration may be terminated if the curve length exceeds a threshold since further advection 
might just add cluttering to the view. This option makes user-guided explorative visualization well suited for real-
time analysis of big flow data in that at any time or in each frame, only a (small) subset is actually accessed to show 
an ROI and the context within reach, with the rest ignored. As the user navigates in the volume, the ROI and the 
context both change accordingly. With the computational cost and memory footprint under necessary and feasible 
control, this approach unleashes the strengths of streamlines in visualizing volume flows. 

 

Figure 1. (a) 2D Line Integral Convolution (LIC). (b) 3D illuminated streamlines. (c) Advanced evenly-spaced 
streamlines (ADVESS). (d) 2D profile of a 3D seeder moving from an old position (blue, for previous frames) 
to a new position (red, for the current frame), with most streamlines reused and others integrated from none. 
 
To fulfill a user-centric seeding mechanism, we design a “machine” called seeder which maintains a 3D rectangular 
lattice of seed emitters evenly spaced along each dimension, with the central emitter attached all the time to the 
“driver” (i.e., the user). This uniform distribution of seeds, with each dimension exactly aligned with an axis of the 
spatial (global) coordinate system, can easily reflect convergence and divergence behaviors of the flow from which 
visual perception comes into play to support feature recognition and pattern reconstruction. Based on this 
observation, this 3D seeder exhibits advantages over a seeding plane (2D), a seeding curve (1.5D), and a seeding 
line (1D, i.e., a rake line) in capturing these two kinds of flow dynamics in the volume. Likewise, the cuboid shape 
outperforms other 3D geometric objects (e.g., sphere). There are three parameters that the user can adjust at run time 
to manipulate the seeder: position, capacity, and resolution, of which the first refers to the 3D location of the central 
seed emitter. The capacity denotes the number of emitters, i.e., the number of seeds that are planted simultaneously. 
An odd integer n ( 3), common to the three dimensions, is adopted to arrange emitters along each dimension and 
therefore there are n3 emitters in total. The resolution specifies the interval (a floating-point value) between two 
neighboring emitters. By default, a single interval is employed in the three dimensions to manage a set of 
geometrically isotropic seeds. Wherever necessary, the three dimensions may differ in the interval, resulting in a 
geometrically anisotropic distribution of n3 seeds. This configuration is good at accommodating some special 
volumes, e.g., an ocean or wind flow field of which the vertical layers are much fewer than the rows and columns. 
 
Wherever the user virtually goes within the flow domain by 3D translation operations (left / right / up / down / 
forward / backward), the position of the central emitter is updated in a way to move the entire rigid-body seeder. 

(a)                                (b)                              (c)                                (d) 
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Then, one seed is released from each emitter for advecting a streamline in both positive and negative directions. This 
navigation mode produces a look and feel as if the user were “dragging” a bundle of streamlines to comb through a 
dense volume of flow. From the implementation perspective, the linkage between the user and the seeder is not as 
“hard” as theoretically described above or as perceptually experienced. Instead, it works in a deferred manner. In 
reality, the seeder position remains unchanged until the user movement in any dimension reaches (or exceeds by a 
little bit) the length designated by the seeder resolution. In other words, most streamlines can be simply reused from 
frame to frame, which not only reduces the amount of streamline integration but also, and more importantly, 
maximizes spatial coherence as visually conveyed by the distribution of streamlines. Figure 1.d shows two snapshots 
of a 2D profile (e.g., the X-Y projection) of a 3D seeder, with the blue for the old position taken in a sequence of 
previous frames and with the red for the new position that is being utilized in the current frame. Without loss of 
generality, the seeder needs to be shifted by one cell of the lattice to the right in this scenario. The two snapshots 
share many seeds at the lattice points of the seeder such that only a small subset of the existing streamlines needs to 
be replaced by integrating entirely new ones, whereas others are just reused for the common seeds. This scheme also 
applies to left/upward/downward/forward/backward translations. Despite the intermittency of seeder movement, an 
illusion holds as if the seeder were continuously driven by the user. To increase depth cueing and enhance visual 
effects, we use a special graphics model called co-dimensional illumination to render 3D streamlines in the volume. 
 
In fact, the primary goal of intermittent seeder movement is to introduce spatial coherence between frames. The 
rationale is that considerable changes in the contents of a scene would distract and even disorient the user such that 
the user could not engage in flow exploration. The minimal update on the streamlines that takes place only for the 
seeds emitted on a boundary slice of the seeder, and even none at all if the user movement has not yet been 
accumulated enough to trigger an actual alteration to the seeder position, both contribute well to maintaining strong 
spatial coherence. On the other hand, the high computational performance of the RK4-ASSEC integrator itself (as 
reported in Section 2.2) is able to achieve real-time frame rates for generating hundreds of streamlines completely 
from none. Our strategy is to reuse as many streamlines as possible and then reserve the power of RK4-ASSEC for 
the user to instead expand the capacity of the seeder. This consideration is necessary because the user may choose to 
enlarge the seeder capacity but decrease the resolution on the fly for a more detailed examination once an ROI has 
been located. If the local region shows a laminar flow pattern after the user turns around in search of features, the 
position and resolution of the seeder can be kept while the capacity is increased to broaden the coverage of 
streamlines. This operation allows the user to briefly detect potential features in the distance for informed 
navigation. In addition, this placement of streamlines, possibly spanning across the entirety of two dimensions (e.g., 
X-Y, X-Z, Y-Z planes), can be displayed in another outside-in view to enrich our understanding of the flow pattern.  
 
Interactive View-Aware Cutting Planes 
 
Depth ambiguity, visual clutter, and view occlusion are three major obstacles to effective volume visualization, 
regardless of the data being scalar or vector. Cutting planes may help mitigate these problems to some extent by 
showing 2D patterns on certain slices embedded in the volume. Cutting planes expose 2D samples of the volume 
from multiple perspectives and, if arranged appropriately and equipped with smart user interaction (e.g., animation 
of a stack of evenly-spaced parallel image slices), lend themselves to cognitive reconstruction of 3D structures. To 
accompany seeder-based user-driven placement of 3D streamlines, a cutting plane orthogonal to the view direction 
can augment depth cueing by providing a reference, against which graphical elements in the scene are visually 
separated into two parts. Even curve segments in front of the cutting plane can further be distinguished more easily 
in the depth, especially if the cutting plane is translated back and forth. Both of these two effects may cognitively 
tackle the visual cluttering problem. Apart from the role of a reference of depth, a cutting plane positioned 
sufficiently near the user can highlight a 2D profile of the volume flow. In front of this 2D image is only a small part 
of 3D streamlines, which conquers view occlusion. After all, the user can look through these curves, a geometry-
based sparse representation, to inspect the flow visualized on the cutting plane. In some sense, the cutting-plane 
visualization and 3D streamlines take each other as the context, improving our understanding of the volume flow. 
 
Visualization of a volume flow projected on view-perpendicular cutting planes is a constituent functionality of 
ExActiveFLOVE. As the user navigates (via left / right / upward / downward / forward / backward translation 
operations) and turns around (the vertical axis by default) in the 3D domain based on the global coordinate system 
X-Y-Z, the view point and view direction both dynamically change. Once the focus point is determined after 
interactive adjustment back and forth along the view direction, a local coordinate system U-V-W can be established, 
with the origin anchored at the focus point and W-axis taking the opposite of the view direction. Then, a 2D 
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rectangular vector field can be created exactly on the U-V plane, i.e., the cutting plane, to comprise a grid of 
uniformly distributed sample points. For each sample, the 3D X-Y-Z coordinate can be obtained from the 3D U-V-W 
coordinate by means of a space transformation. Next, the associated 3D X-Y-Z vector is evaluated in the global 
system through tri-linear interpolation before the 3D U-V-W vector is derived by an inverse space transformation. 
Finally, the W-component, perpendicular to the cutting plane, is discarded to yield a 2D U-V vector. In this way, a 
2D vector field can be constructed on the cutting plane as a projection of the volume flow. Then, switching can be 
made at run time among arrows, ESS, and LIC to visualize this 2D flow, with the result mapped back onto the 
cutting plane in 3D settings. This entire pipeline is detailed in Figure 2. 

 

Figure 2. The pipeline of visualizing the projection of a volume flow on a view-perpendicular cutting plane.  
 
In ExActiveFOVE, cutting-plane visualization can be toggled on/off dynamically as desired, running at real-time 
frame rates. Equipped with this utility like a handheld magnifying glass, the user is able to probe into the volume to 
gain insight from various angles, at different depths, and with multiple resolutions. In ExActiveFLOVE, multi-
resolution visualization is attained by changing the uniform sampling interval and / or the size of the cutting plane. 
As for ESS, a third way is to adjust the density of evenly-spaced streamlines (Liu & Moorhead, 2006). 
 
Pixel-Based Focus-Guided Content Culling 
 
Visual clutter and view occlusion can be further addressed by culling part of the graphical contents in the scene. On 
one hand, this functionality prunes occluding, unimportant, or uninteresting elements (or those already examined) 
that may block or distract the user from investigating or emphasizing posterior, significant, or interesting items. On 
the other hand, this widget brings forth a new concept on interacting with the volume flow representation. While a 
streamline is considered a graphical object, we treat seeder-based user-driven placement of 3D streamlines (Section 
3.1) as an object-based compute-intensive back-end processing mechanism since it governs what/where streamlines 
are generated. In comparison, we regard content culling as a pixel-based focus-guided front-end processing scheme 
in that part of a streamline, already generated and rasterized (i.e., converted into discrete pixels, or more precisely, 
fragments), is further manipulated by being retained or discarded in the display. In this sense, it fulfills low-level 
fine-granularity streamline “editing”. We believe that this capability is as instrumental as, and in parallel with, 
streamline placement. Both interactive placement (Section 3.1) and automated placement (e.g., ESS, Liu et al,, 
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2006) control the generation of streamlines, whereas they do not handle how (and what parts of) the streamlines are 
rendered. Content culling bridges this gap by providing great flexibility of what is selected for display in the view. 
In ExActiveFLOVE, it is deemed as a device for image-oriented exploration, which is seamlessly incorporated with 
seeder-based user-driven exploration (Section 3.1) to enhance volume flow visualization. Technically, our content 
culler is implemented by exploiting the stencil buffer of OpenGL. The scope of the culler is defined by either the 
inside or the outside of a rectangle (or of a circle) and the user can toggle between the two complementary areas. 
 
It is worth emphasizing that a view-perpendicular cutting plane (Section 3.2) can be dynamically attached to (and 
detached from) the content culler at ease, which entirely avoids view occlusion for the 2D profile visualization. As 
the cutting-plane is animated back and back in the view direction, interior structures are then exposed to become the 
focus, with 3D streamlines beyond the cutting plane (also beyond the content culler) to make the context. Thus, the 
content culler is a smart real-time volume prober that can be translated (left / right / upward / downward / forward / 
backward) and toggled on/off.  To our knowledge, the focus-guided content culler proposed here is the first in the 
literature for volume flow visualization. In fact, pixel-based front-end exploration has not yet attracted much 
attention in data visualization as most research has been revolving around object-based back-end exploration. 
  
Prototypical Homogeneous VR Extension 
 
The first room-sized Cave Automatic Virtual Environment (CAVE) designed by University of Illinois at Chicago in 
1991 and the VR-Juggler library opened up opportunities for VR application development. The Virtual Wind Tunnel 
system developed at NASA Ames Research Center in 1993 erected a milestone for visualizing large CFD flows. In 
2002, we also developed a CAVE-based system called TritonII-Flow (Liu et al, 2003) for interactive visualization of 
oceanographic-atmospheric volume flow data. VR facilities (e.g., CAVE) fueled by high-performance (parallel) 
computing are what professional-level serious visualization of large (e.g., terabyte) scientific data should resort to. 
Meanwhile, we might also consider mobile VR devices (e.g., HTC Vive, Oculus Rift), with very limited computing 
power, for use in testing, evaluation, education, and training. ActiveFLOVE and ExActiveFLOVE themselves are 
capable of delivering immersive (engaging) volume flow visualization, while we believe that VR can further 
augment immersive effects. VR is among the peripheral add-ons (Section 2.2) atop the ActiveFLOVE engine and 
therefore we select HTC Vive, coupled with Unreal, to facilitate a prototypical extension of ExActiveFLOVE to VR. 
 
An overarching requirement is to avoid not only degradation of the high computational performance of the 
ActiveFLOVE engine (developed in C/C++) but also any obvious incompatibility issue (e.g., memory management), 
of which both are often incurred by C# (adopted in Unity, a VR development environment), Python, Java, etc. Thus, 
Unreal is our great choice of VR development because of the homogeneity with (Ex)ActiveFLOVE in C/C++. In the 
Unreal environment, linear splines (USplineComponent) are employed to “warp” cylinders (UStaticMesh) to create 
thin tubes around stream line segments and a rainbow color map (UMaterial) is utilized to encode the velocity vector 
magnitude. Besides this representation, strips (PersistentLineBatcher) can also be chosen for rendering streamlines. 
 
 
RESULTS AND DISCUSSIONS 
 
ActiveFLOVE is a toolkit made up of pure C++ classes, except for only several files with a tiny amount of code in 
support of platform-specific testing on visualization functionalities. It was developed using Microsoft Visual Studio 
(MS-VS) 1997 due to the algorithmic nature and the irrelevance to many new features of MS-VS. Recently, we 
switched to MS-VS 2008 to implement ExActiveFLOVE, without any extra dependence on MS Windows. Given 
the high computational performance (with statistics in Section 2.2) capable of real-time frame rates on an ordinary 
laptop for the proposed techniques without the need for any kind of parallelism, timing breakdowns are omitted 
herein for ExActiveFLOVE. These exploration-oriented techniques confine computing to only a subset of data for 
the local region, insensitive to large data sizes (Section 3). Thus, this section is focused on showing some 
visualization results of a wind volume flow (on a 360 × 181 × 13 Cartesian grid) to demonstrate the functionalities. 
 
This rectangular volume of steady wind flow in the sky was derived from converting a spherically-coordinated 
dataset around the Earth. Thus, a map of the globe is displayed in Figure 3 to help with the spatial context of the 
“flattened” world. The settings of the 3D seeder common to the nine images (a-i) are capacity = 5  5  5 (for 125 
seeds) and resolution = 2.0 (in cells of the grid). The computational speed for generating 125 streamlines ranges 
from 41.0 to 62.5 Frames Per Second (FPS) and the scene rendering speed varies from 6.4 to 21.3 FPS on a 
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Microsoft Surface laptop running Windows-10 with Intel i7-6600U CPU @ 2.60/2.81GHz and 16GB RAM. Except 
for a color-wheel map adopted for the backdrops in images c and g-h, a rainbow color map is used otherwise, with 
deep blue for the lowest velocity magnitude and full red for the highest. Carrying cone-shaped arrows aligned with 
the flow to indicate the positive direction, streamlines are rendered with co-dimensional illumination. In images a-d, 
the user is positioned at (46.3, 74.8, 7.7) , looking down and horizontally toward 16 degrees (counterclockwise from 
the east) and toggling on a  view-perpendicular cutting plane after investigating flow structures in the baseline mode. 
The flow projected on this cutting plane is then visualized by 2D arrows, 2D evenly-spaced streamlines, and a 2D 
LIC image in order. Despite slight distractions from 3D streamlines in front of the plane, the pattern of the 2D 
profile can be well conveyed and easily recognized. In images e-h, the user is positioned at (66.3, 57.5, 6.8), looking 
down and horizontally toward 147 degrees (counterclockwise from the east), toggling on a rectangular content culler 
to entirely avoid not only visual clutter but also view occlusion from the outside and then from the inside of the 
rectangle, and “pasting” the culler (in the latter mode) on a view-orthogonal cutting plane that is shifted from near to 
far to probe 2D profiles of the flow by ESS. Image i is a snapshot of ExActiveFLOVE running in a VR environment, 
with an HTC Vive connected to a desktop PC, for a more immersive experience of volume flow exploration. 

 

Figure 3. ExActiveFLOVE in execution for real-time visualization of a wind volume flow via seeder-based 
user-driven placement of 3D illuminated streamlines, with: (a) the baseline mode; (b, c, d) arrows, ESS, and 
LIC applied to a view-perpendicular cutting plane, respectively; (e, f) the contents outside and inside a square 
culled from the scene, respectively, (g, h) the culler stuck on a view-perpendicular cutting plane, shifted from 
near toward far to probe 2D profiles by ESS, (i) the VR mode in which an HTC Vive is attached to a desktop. 
 
 
CONCLUSIONS AND FUTURE WORK 
 
We have presented ExActiveFLOVE, which, built on top of our ActiveFLOVE engine, is able to attain real-time 
immersive explorative visualization of volume flows on an ordinary laptop without the need for any kind of parallel 

(a)                                                (b)                                               (c) 

(d)                                                (e)                                               (f) 

(g)                                                (h)                                               (i) 
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computing. The major contributions consist in reconfigurable seeder-based user-driven placement of 3D illuminated 
streamlines, dynamically maneuverable view-orthogonal cutting planes, a pixel-based focus-guided content culler, 
and a prototypical homogeneous extension to VR. Empowered by ultra-fast, highly accurate, very robust streamline 
integration and geared towards informed navigation plus ROI inspection, the four methods address view occlusion, 
visual clutter, and depth ambiguity in 3D settings. The explorative characteristic indicates that ExActiveFLOVE is 
insensitive to the data size and hence is well suited for interactive insightful visual analysis of big volume flow data. 
 
As for future work, we plan to enrich ExActiveFLOVE by unleashing the combined power of available fundamental 
algorithms of ActiveFLOVE such as streamline integration on curvilinear/unstructured grids, pathlines, streak lines, 
and AUFLIC (Liu & Moorhead, 2005). We are also interested in adding a new layer for parallel visualization on top 
of ActiveFLOVE to incorporate a suite of algorithms that we have developed by multi-threading, GPU, and MPI. 
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